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Abstract

Four main results are arrived at in this paper. (1) Closed

convex sets of classical probability functions provide a

representation of belief that includes the representations

provided by Shafer probability mass functions as a special case.

(2) The impact of "uncertain evidence" can be (formally)

represen d by Dempster conditioning, In Shafer's framework. (3)

The impact of "uncertain evidence" can be (formally) represented

in the framework of convex sets of classical probabilities by

classical conditionalization. (4) The probability intervals that

result from Dempster/Shafer updating on uncertain evidence are

included in (and may be properly included in) the intervals that

result from Bayesian updating on uncertain evidence.
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Bayeslan and Ion-layesian Evidential Updatigs'

1. Recent work in both vision systems (Vesley) and in

knowledge representation (Lovrance, Barnett, Quinlan, Dillard)

has employed an alternative, often referred to as Dempster/Shafer

updating, to classical Bayesian updating of uncertain knowledge.

Various other investigators have gone beyond classical Bayesian

conditionaligation (MTCIN, ENYCIN, DNDRAL,...) but in a less

systematic manner. It is appropriate to examine the formal

relations between various Bayesian and non-Bayesian approaches to

what has cone to be called evidence theory, in order to explore

the question of whether the new techniques are really more

powerful than the old, and the question of whether, if they are,

this increment of power is bought at too high a price.

2. Orthodox probability theory supposes (1) that we

commence with known statistical distributions, (2) that these

distributions are such as to give rise to real-valued

probabilities, and (3) that these probabilities can be modified

by using Bayes' theorem to conditionalize on evidence that is Accesion For

taken to be certain. There are thus three ways to modify the NTIS CRAW
DTIC TAB 0

classical theory. Unaiwounced 0
Justification

We may dispense with the supposition that we are dealing

with known statistical distributions. The best known advocate of Distributlonl

this gambit was L. J. Savage, who argued that probabilities AvaiIbility Cooes

represent personal, subjective, opinions, and not objective Dist

distributions of quantities in the world. This approach has
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given rise to Bayesian statistics, based on that fact that the

opinions of most people are such that, faced with frequency data,

they will converge reasonably rapidly. Furthermore, in practice,

it is common to recognize that some opinions are better than

others, and to use as prior distributions in statistical inference

distributions representing the opinions of knowledgeable experts.

This approach has been incorporated in some expert systems, for

example, PROSPECTOR. It has both virtues and limitations. A

purely pragmatic virtue is that it allows us to get on with our

business even when we don't have the knowledge of prior

distributions we would like to have. It has the practical virtue

that the considered opinions of genuinely knowledgeable experts

are formed in response to, and reflect with some degree of

accuracy, relative frequencies in nature. But it has two

drawbacks: it does not incorporate any indication of whether the

opinion Is a wild guess, or a considered Judgement based on long

experience; and it calls for expert opinions even in the face of

total, acknowledged ignorance.

This suggests the second departure from the classical

picture; abandoning the assumption that our probabilities are

point-valued. This has recently been hailed as a novel departure

(Lowrance, 1982, p. 21; Garvey, at. al., 1981, p. 319; Dillard,

1982, p. 1; Lowrance and Garvey, 1982, p. 7; Wesley and Hanson,

1982, p. 16; Quinlan, 1982, p. 9). The idea of representing

probabilities by intervals is not new (cf. Kyburg, Good, Levi,

Smith), and the notion of probabilities that constitute a field

richer then that of the real numbers goes back even further



(Keynes, 1921, pp. 38-40, offers a formal philosophical treatment

of such entities; . 0. Koopsan, 1941, 1942, offers a mathematical

characterisation). Iven the standard subjectivistic or

personalist view of probability can be construed in this way;

while each person has a set of real-valued probabilities defined

over a given field, a group of people will reflect a set of

probability functions defined over the field. Ve may quite

reasonably focus our attention on the maximum and minimum of these

functions evaluated at a member of the field. 1

In general the representation in terms of intervals seems

superior to the representation in terms of point values. Even in

the ideal case, in which all of our measures are based on

statistical inference from suitably massive quantities of data, it

is most natural to construe these measures as being constrained by

intervals. In confidence interval estimation, for example, what

we get from our statistics is a high confidence that a given

parameter is contained in a certain interval. This translates

neatly and conveniently into an interval constraint. The results

of statistical inference should reflect indeterminacy or

vagueness. What we can properly claim to know is not that a

parameter has certain value, but (with probability or high

confidence) that it lies within certain limits. This limitation

of human knowledge should surely be mirrored in computer based

systems.

The third departure from the classical scheme is to consider

alternatives to layes' theorem as a way of updating probabilities

in the light of new evidence. This departure Is recent, and was

first stated in Dempster, 1967. Dempster's novel rule of
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combination, subsequently adopted by Shafer (1976), is often

referred to as a "generalizatIon" of Bayesian inference (Shafer.

1981, p. 337: "The theory of belief functions ... is a

thoroughgoing generalization of the Bayesian theory ..."; Lovrance

and Garvey, 1982, p. 9: "Dempster's rule can be viewed as a direct

generalization of Bayes' rule ... ; Dillard, 1982, p. 1; Garvey,

et. al., p. 319; Lowrance 1982, p. 21). This suggests, on the one

hand, that Bayes' rule can be regarded as a special or limiting

case of Dempster's rule, which is true, and on the other hand that

Dempeter's rule can be applied where Bayes' rule cannot, which is

false. Dempster himself recognizes (1967, 1968) that his rule

results from the imposition of additional constraints on the

Bayesian analysis (see note 5).

One criticism of the usual Sayesian approach to evidential

updating is the quantity of inforoation that may be required to

specify the probability function covering the field of

propositions with which we are concerned. This may be empirical

information (if the underlying probabilities are thought of as

being based on statistical knowledge), psychological information

(if a personalistic interpretation of probability is adopted), or

logical information (if we interpret probability as degree of

confirmation, a la Carnap 1951). Suppose we consider a field of

propositions based on the logically independent propositions

the set of what Carnap called "state descriptions:"

induced by this basis consists of 2 atoms, each of which is the

conjunction of the u (negated or unnegated) .. It is obvious

that for reasonably large n this assignment of probabilities
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presents great difficulties. But once we have those 2. numbers,

we're done - we can calculate all conditional probabilities as

well as the probability of any proposition in the field based on

Is there a saving in effort if we go to a Dempster/Shafer

System? osing the handy represeatation in Shafer (1976), we take

8, the universal set, to be the set of all 2E possibilities

represented by the state descriptions, and assign a mass to each

subset of 0. This requires 2 ezp 2- assignments! As far as the

number of parameters to be taken account of is concerned, we are

exponentially worse off. But if we construe probabilities as

intervals, or represent then by sets of simple probability

functions, we are Just as badly off. (For an example relating

mass assignments to interval assignments, see table I in the

appendix. For the general equivalence, see theorem 1 below.)

Dillard (p. 4) refers to "computational limitations" and Lowrance

and Garvey (1982) mention that with large 0, maintaining the model

is "computationally infeasible".

In either case, we need to find some systematic and

computationally feasible procedure for obtaining the masses or

probabilities we need. Bayesian and non-Bayesian approaches are

in essentially the same difficult situation in this respect,

although there are often plausible ways of systematizing the

parameter assignments on either view.

3. Whether the representation of our initial knowledge.

state is given by an assignment of masses to subsets of S or by a

set of classical probability distributions over the atoms of 8, it
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is important that these masses or probabilities be justifiable.

As already suggested, a streightforward way of obtaining them is

through statistical inference, which (when possible) yields

interval valued estimates of relative frequencies. But there may

also be other ways to obtain masses or intervals of probability.

If so, then the deep and difficult problem arises of how to

combine both statistical and non-statistical sources of

information.
2

It has been suggested that Dempster/Shafer updating relieves

us of the necessity of making assumptions about the joint

probabilities of the objects we are concerned about. Thus,

Quinlan claims that INFERNO "makes no assumptions whatever about

the joint probability distributions of pieces of knowledge ...

(Quinlan 1982). Other writers have made similar claims - e.g.,

Wesley and auson,1982, p. 15. (To make independence assumptions

is exactly to make assumptions about joint probability

distributions.)

It is clear that the assignment of masses to subsets of 0

Invloves just as much in the way of -assumptions" as the

assignment of a priori probabilities to the corresponding

propositions. In view of the reducibility of the Dempster/Shafer

formalism to the formalism provided by convex sets of classical

probability functions (to be shown below), moreover, we may

recapture the assumptions about joint probability distributions

from the convex Bayesian representation.

4. One important novelty claimed for the Dempster/Schafer



systue is its ability to handle uncertain evidence. But even this

is not In itself anti-Bayesian. there are also Bayesian methods

for handling uncertain evidence. One of these, used in PMOSPECTOR

and mentioned by Lowrance (1982, p. 17) is known in the

philosophical world as Jeffrey's rule. (It is presented and

discussed in Jeffrey, 1965.) It follows from Bay*s' theorem that

P(A) - P(A/B)P(B) + P(A/-B)P(-B).

If you adopt a new (coherent) probability function P', there are

essentially no constraints on P'(A). But one often confronts

situations where if a shift in probability originates in the

assignment of a new probability to B, that should not affect the

conditional probability of A given B: P(A/B) - ?'(A/B). We have

learned something nev about B, but we haven't learned anything new

about the bearing of the truth of B on the truth of A.

Given such a situation the response of a shift in the

probability of B from P(B) to P'(B), resulting from new evidence,

should propagate itself according to:

P(A) - P(A/B)P'(3) + P(A/-B)P'(-B)

When new evidence leads us to shift our credence in B from P(B) to

P_), a corresponding shift in probability is induced for every

other proposition In the field: the new probability of a

proposition A is the weighted average of the probability of A,

given A, and the probability of A given not-B, weighted by the new

probabilities of B and not-B.
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Lowrance (1982) worries about the problem of iterating this

move. Having made it, should we then update the probability of I

in the light of the new probability P'(A)? Wesley and Hanson

(1982, p. 15) worry about a potential "violation of Bayes' law".

But what is offered is not a relaxation method; it is a method of

evaluating the impact of evidence which warrants a shift in the

support for B. It makes no sense to consider updating P'(B) in

the light of the new value of P(A); P'(B) is the source of the

updating. So contradiction lurks here. But there is a difficulty

for mechanical updating - the notion of a source is clear to us,

but may not even be represented in an artifIcial system.

Other Bayesian updating procedures are possible (cf. Rartry

Field, 1978; Diaconis and Zabell, 1982), but it is hard to think

of one so simple and often so natural. This is particularly true

in the epistemological framework considered by Shafer; the weights

of the subsets of 0 assigned masses reflect our a priori

intuitions; there is no way in which the values of these masses,

given our observations, can be changed without changing the model

entirely. What impact given evidence has should not also change

according to the evidence we happen to have. Shafer himself has

explored the relation between Jeffrey's rule and his own updating

recommendations in (Shafer 1981).

5. In order to investigate more closely the relations

between the Bayesian and Dempster/Shafer strategies for updating,

it will be helpful to have several formal results. In the present

section we establish the partial equivalence between the

assignment of masses to subsets of 0 (the space of possibilities)
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and the assignment of a convex set of simple classical probability

functions defined over the atoms of S. The equivalence is only

partial, since some plausible situations do not have a natural

representation in terms of ases functions.

Shafer's belief functions are defined relative to a frame of

discernment 0, and are given by either a belief fun-tion or a

mass function defined over the subsets of S. The atons of 0 are

the most specific states of affairs that concern us in a given

context. The belief function Sel and the mass function a are

related by:

30l(X) - J(A)
AcX

Throughout, *" is to be understood as allowing improper

inclusion. Proofs have been relegated to Appendix A.)

Our first observation is that to every belief function

defined over a frame of discernment, there corresponds a closed

set of classical probability functions S defined over the atoms

of 8 such that for any Xc.0,

This result is stated as Theorem I in appendix A, and proved

there. The proof gives a way of constructing members of the set

of classical probability functions, but the intuitive idea is

simply this: Consider a set E, to which is assigned mass m(X).

That mass may be construed as probability mass that may be

assigned in any way (subject to other constraints) to the atons



of L We obtain the set of classical probability functions that

corresponds to the mass function m by considering all the ways in

which the mass that is not assigned to atoms by 2 can be assigned

to atoms while maintaining the constraints Imposed by the

assignment of mass to sets of atoms. Tables I and II in the

appendix show both the general and a specific computation for a

simple four-atom frame of discernment.

An example that shows the converse does not hold Is the

folloving3: Consider a compound experiment consisting of either

(1) tossing a fair coin twice, or (2) drawing a coin from a bag

containing 40Z two headed and 602 two tailed coins and tossing it

twice. The two parts (1) and (2) are performed in some unknown

ratio P, so that, for example the probability that the first toss

lands heads is p*1/2 + (l-p)*0.A, 0 <2 < 1. Let A be the event

that the first toss lands heads, and B the event that the second

toss lands tails. The representation by a convex set of

probability functions is straight-forvard, but where P is
mn

P,(AuB) - 0.75 <0.9 - P*(A) + P(B) - P*(AnB) - .4 + .5 - 0

By theorem 2.1 of Shafer 1976, Bel(ApB)> Bel(A) + Bel(B) - Bel(A

,A!), P, is therefore not a belief function. It is possible to

compute a mass function, but the masses assigned to the union of

any three atoms must be negative.

Subject to the condition, however, that E*(AvB) > P,(A) +

P..(B) - P.(AnB), we can represent any closed convex set of

classical probability functions by a Shafer mass function. This
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is theorem 2 in the appendix.

These two theorems show that the representation of uncertain

knowledge provided by Shafer's probability mass functions is

equivalent to a representation provided by a convex set of

classical probability functions, and that the representation of

uncertain knowledge by a convex set of classical probability

functions is equivalent to a representation provided by a

probability mass function so long as the convex set of

probability functions satisfies the general relation P*(AUB).

,(A) + P,(B) - P,(AAB).

6. Of more interest that the mare representation of belief

is the possibility of representing the way that beliefs should

change in response to new evidence. Thus what we propose to look

at in this section is the relation between Dempster/Shafer

updating, and convex Bayesian updating. We shall first look at

the relation In the case of evidence that is "certain"; and then

we shall look at it in the case of "uncertain evidence".

Suppose that our beliefs can be represented either by a

closed convex set of classical probability functions S or by a

Shafer mass function. Let B be evidence assigned probability 1,

or support 1. Shafer defines upper and lower conditional support

functions thus:

-B) (Bel(AOB) - -el(i))/(l Bel(f))

_*(_) - (k*)l_*(B)
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where P*(X) - 1 - Iel(Y) Is called the plausibility of X.

Theorem 3 in the appendix shows that the folloving

inequalities hold:

m n I(AIB) < Bel(AiB) < P*(AI_) < max P(A!)

For the case of a frame of discernment with four atoms,

illustrated in table 1 of the appendix, we have the following,

where X is the mass assigned to the set i in 9, Xj is the mass

assigned to the union of sets I abd , etc.

mmi P(A )
( 1+33 )+( 13+'23+34 )+Q( 123+k 34 4, )+4

Bel(AB) U

(1 +3)+(13+23+34) (123-.34+234)+Le+ [ -2+ 144+X-i24

m=P(AIB) - X1 +(x1 2 +X13+X1 4 )+(X 1 2 3+X124+X1 34 )+X)

(Xl+x3) +(Xl 2+X13 +X 14) +(xI23 +X124 +X134) +X-18

We observe that:
(1) min P(AI) - 1(AP) ff+ 24 - 0

(2) !1.(All) - rk(AIB) iff _]3+123!134+.. - 0

(3) max I(ALi) - ?*(A LB) iff 123+134+!234 - 0
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Before turning to a discussion of the inequalities of

theorem 3, we show that they bold in general, and are not

restricted to the case of "certain" evidence. Given two leas,

the proof of the general result (theorem 4 of the appendix) is

trivial. The two lemmas themselves say not be without interest.

7. The first lenma (leans 1 of the appendix) states that

by expanding the frame of discernment 6, we can represent the

impact of uncertain evidence as the impact of "certain' evidence.

This is not to say that we need to specify that evidence; it is

that there is an algorithm by means of which the impact of the

uncertain evidence can be represented as the impact of other

certain" evidence.

The general idea of the argument is this. Suppose that S is

the frame of discernment, and that our initial belief function is

Bell. The impact of uncertain evidence can be represented by a

simple support function Bel. whose single focus is Cc20 , to which

x attributes mass s (and therefore mass 1-s to 6). To giwe a

representation by "certain" evidence, we split every atom of 8

into two new atoms to obtain 0'. We defin a new belief function

on 0', Bel,', which is such that

(a) if xce, .el'(_) - !!.11 (X)

(b) if Xce, (Bell t. lX)(X) - Bell'(X ). where _ is a

subset of 0' such that the evidence partially supporting C

provides total support for R.

Two remarks on this construction are in order. First, we
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have given no rule for finding the "possibility" R. But in

general that should be no problem. Suppose C is the proposition

that there to a squirrel on the roof of the barn. The light is

bad, so Rel assigns a mass of only .8 to C, and assigns the

remaining mass to 0. We take E in 0' to be the proposition that

it aeens (.8) to be the case that there is a squirrel on the

roof, for which the evidence is conclusive. The index 0.8

indicates the force of the seeming, and is reflected in our

assignment of Passes in 0'. In many situations it seems quite

natural to replace "uncertain evidence" by the "certain" data on

which it is based.

Even the case discussed by Daiconis and Zabell (1982) does

not seem too difficult. The case is one in which we have one

degree of belief that a Shakespearean actor to be heard on a

record is Gielgud (say a half), but after hearing his voice for a

while, we come to have a degree of belief of .8 that it is

Gielgud. It is quite true that we would be hard put to it to

describe in language the acoustic characteristics we come to

assign to that voice with probability 1 that in turn provide

evidence that it is the voice of Gielgud. But we can always

refer to those characteristics as "the characteristics I have

been (consciously or unconsciously) reacting to".

Second, however, whether or not we can always do this is

unimportant for the comparison of Bayesian and Dempster

conditioning. We can regard the introduction of E to be merely a

computational device that helps us to compare the distribution of

masses In 0 according to the function Bel 1 * !elc to the

corresponding set of Bayesian conditional distributions.
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Lemas 2 of the appendix proves a corresponding fact about

Jeffrey's rule for uncertain evicence. 4  It, too, may be

represented as the effect of (possibly artificial) "certain"

evidence. The argument is similar. Suppose our original degrees

of belief are defined over a certain field of propositions. We

introduce a nev elementary statement ito that field, thereby

dividing each atom of the original field into two new atoms. The

new elementary statement stands for that statement that, if it

were "certain", would have just the effect that our "uncertain"

evidence does. We then show that the resulting new probabilities

obtained by conditionalizing on our new statement are exactly

those yielded by applying Jeffrey's rule to the shift in

probability of the "uncertain" evidence.

With these two results, and our previous theorem that shows

the relation of Deupster/Shafer and convex Bayes updating to the

case of "certain" evidence, it follows immediately that the

inequalities of theorem 3 hold whether or not the updating is

done on the basis of "certain" evidence. In any case, the

intervals resulting from Dempster/Shafer updating will be

subintervals, and may be proper subintervals, of the intervals

resulting from the application of conditionalization to sets of

classical probability functions.
5

8. Dempster/Shafer evidential updating, we have seen,

leads to more tightly constrained representations of rational

belief than does convex Bayesian updating. 6 It might be thought

that this is a virtue. But whether or not this is a Good Thing



is open to question.

Suppose that D -D are alternative decisions open to

you, and that you have a utility function defined over the cross

product of D and the set S of possible states. You begin with a

belief function, and you obtain some evidence. If you combine

this evidence with your initial belief function according to

convex Bayesian couditionalization, your new beliefs will be

characterized by a set of probability functions P If you

perform the combination of evidence according to non-Sayesian

procedures, your new beliefs will be characterized by a set of

probability functions fN that is (in general) a proper subset of

Given any probability function P in either ?j or V, you can

calculate the expected value of each decision: S(Di, P). Let us

say that DI is admissible relative to a set of probability

functions just in case there is some probability function in the

set according to which the expected value of is at least as

great as the expected value of any other decision.8  Since PY is

included in !31 the admissible decisions we obtain if we update

in a non-Bayesian way are included among those we obtain if we

update in a Bayesian way.

There are three cases to consider. (1) We obtain the sase

et of admissible decisions by either updating procedure. In

this case we have gained nothing by using the stronger procedure.

(2) If Py leads to a set of admissible decisions containing more

than one member, then so does !B, and we must in either case

invoke additional constraints in order to generate a unique

decision. (3) If PR leads to a unique admissible decision and 5
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does not, we appear to have accomplished sonething useful by

means of son-layeslan updating.

But it is open to question whether the added power should be

built into the evidential updating rule, or whether it should

appear as part of a decision procedure that takes us beyond the

evidence. Many people feel that principles of evidence and

principles of decision should be kept distinct.

Consider an urn filled with black and white Iron balls, some

of which are magnetized and some of which are not. It is easy to

Imagine that by extensive sampling, or by word of the

manufacturer, our statistical knowledge about the contents of the

urn may be as represented in table II of the appendix, where the

set of black balls is represented by A, and the set of magnetized

balls is represented by B. Given that this is our initial state,

we may ask what our attitude should be toward the proposition

that a ball selected from the urn is magnetic, given that it is

white.

Dempster conditioning yields the degenerate interval (0.8,

0.8).

Bayesian conditionalization yields the interval [0.5, 0.8.

Suppose you are offered a ticket for $.75 that returns a dollar

if the ball is magnetic. On the view identified with Dempster

and Shafer, it is not only permissible, but, given the usual

utility function, mandatory to buy it. On the convex Bayesian

view either accepting or rejecting the offer would be admissible.

It is true that, for all you know, the true expectation is

positive; but it is also true, for all you know, the true
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expectation is negative. If everything you know Is true, the

expected lose may still be $-.25.

On the other head, there are cases where Dempsters rule of

combination leads to intuitively appealing results, but tbe

convex Bayes approach does not. 9 Suppose you knov that 702 of

the soft berries in a certain area are good to eat, and that 602

of the red berries are good to eat. What are the chances that a

soft red berry is good to eat? Dempster's rule yields .42/.54

- .78, which has intuitive appeal. But the set of distributions

compatible with the conditions of the problem as they have been

stated leaves the probability of a soft red berry being good to

eat completely undetermined: it is the entire interval L0,13! it

is possible that 10OZ of the soft red berries are good, and it is

possible that 02 of the soft red berries are good.

It is clear that in applying the rule of combination, we are

implicitly constraining the set of (joint) distributions we

regard as possible. This is suggested by Shafer's requirement

that the items of evidence to be combined be "distinct" or

"independent". The most natural sufficient condition that leads

to the same result as Dempster's rule of combination is that all

the probability functions in our convex set satisfy the three

conditions:

(L) P(G) - 1/2

(ii) P(S/GR) - P(S/G)

(iLLI) P(S/ aR) - P(S/G)

Condition (1), of course, is our old friend, the principle of
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Indifference. Conditions (ii) and (Iii) represent conditional

Independence, and it Is not hard to Imagine that we have warrant

for supposing they are satisfied.

The exact necessary and sufficient conditions for agreement

between the two methods are that our set of probability functions

satisfy one of the two conditions

(iv) P(ans)/(Go sS) - P(U1)*?( S)/(G&l)*P(C S)

or (v) ?(S/UR)/l(S/C)- P(C)l(G) * ?(S/a,)lP(S/G)

If our evidence is statistical in character, it clearly

behooves us to unpack the statistical assumptions underlying our

employment of non-BayesLan updating procedures. But what if our

evidence is not statistical in character?

One plausible response is that Dempster's rule of

combination is not designed for all cases In which you have

statistical data to serve as input. Sometimes the masses in the

belief function are determined by frequencies, and sometimes they

are not; only when they are not determined by frequencies should

we apply non-Bayesian updating. It is difficult to make a case

against this response except by making a case for the claim that

all responsible and useful probabilities, even very vague ones,

are based on statistical knowledge. But even granting the claim,

we must face the problem of how to treat evidence which Is mixed

- which contains both statistical components and intuitive

components. While it is a theorem that Dempster combination is

both commutative and associative, it is obviously not the case
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that a mixture of Dempster and Bayesian methods need be

commutative and associative.

It should be strongly emphasized that the present arguments

are not intended as arguments in favor of the general

applicability of convex Bayesian conditionalization. Rather,

what I have shown is (1) that the representation of belief states

by distributions of masses over subsets of a set 0 of

possibilities is a special case of the convex Bayesian

representation in terms of simple classical probabilities over

the atoms of 0, (2) that the treatments of uncertain evidence in

both Bayesian and non-Bayesian updating are reducible to the

corresponding treatments of certain evidence, and (3) that non-

Bayesian updating yields more determinate belief states as

outcomes, but that the benefits afforded by non-Bayesian updating

are limited and questionable.
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Theorem 1:

Let a be a probability mass function defined over a frame of

discernment 0. Let gel be the corresponding belief fumtion,

Be1(I) - m 3(A). Then there is a closed, convex set of
AcY

classical probability functions . defined over the atoms of 0

such that for every subset I of 0, Bel(z) -min P().
PCS

Proof: Let b p be the set of classical probability functions P defined

on the atas of 0 such that for every 1 C 0, Bel(l) fP(X) <1-3.1(J).

S is closed, since P(X) - DW(I), r(_) - 1-3&1(X) is a classical-p

probability function. S is convex, since for 0 c a < 1, aPI(X) + (1-a)P 2 (X)

lies between el(X) and 1-bel(X) whenever P1 (X) and 1 2 (X) do. Since for any given

there is a _ suh that !(X)- Eel(, Bel M mi P(X). And mi p)

> b.1(X) since this inequality holds for every PcS P

To show that S is non-eupty, it suffices to show that there

is a PFc such that for every -.O, Bel(X) < P(X), since if this

is so, then Be1(X) < 1(1) and 1 - 5.1(j)> 1 - P(1) - 1(X).

Suppose the atoms of 0 are ordered lexicographically. For

every set X, Xce, add the mass assigned to X, m(X), to the mass

assigned to {ai}, where {a I is the lexicographically earliest atom

in X. Let the new mass function be m'. Define P(X) - m'({a}).
atX

P(O)-O; P(e)-l, since all the original mass ends up on the atoms,

and P(X) > Bel(X), since the mass assigned to any subset of X

ends up on the atoms of X.

0
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Theorem 2

If S is a closed convex set of classical probability functions

defined over the atoms of 8, and for every A, Be, min P(AvB) > min P(A)

+ min P(B, - min P(AmB), then there is a mass function m defined over

the subsets of 8 such that for every X in e, the corresponding Bel

function satisfies

Bel (X) minP(X)
PcS-- p

Proof: Since S is closed and convex, for every XC8 there is

a PES such that P(X) = Min P(X). For every XC8, define P,(X) to be milP(X).
- ' P s - PcS

---- ---p

By Shafer's Theorem 2.1, if 0 is a frame of discernment

function Bel 2 (0,1] is a belief function if and only if

(1) Bel (0) = 0 P,(O) = 0

(2) Bel (e) = 1 P,(e) = 1

(3) For every positive integer n and every collection A A

of subsets of 8,

Bel (AI...uA) > (-1) Bel (('NA )-- I {I,. .. ,r_, icl i

Since Shafer's theorem 2.2 gives an algorithm to recapture the mass

function from the belief function, we need merely establish (3) for

our function P*.
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Suppose, on the contrary, (3') fails. Then there is a specific collection

.,....,AM, of smallest cardinality n, for which (3') is false, i.e.,

C ...,... ,n% i! -

by the hypothesis of the theorem. Now

*( --- - _ " -((-pAL)4j(&pk) u- -.-u(4_jn.0_,_ ))

and by hypothesis, (3') holds for collections of cardinality of (n-l). Thus

(4) p*((AlA ) (A2 %A ) u... u (An 1 'A ) (-1)! +P ( A. A
-~~~~- - :.,-} p( - n .... .- -.- _ iEI --- -n

and (5) !,(At u. ) • (-1 I.l+l-- ..'LA -,) _> (-1) - P.(() A. )
- lc.d 1,. .. ,_n-1 .x_ -

Let us compute

We evaluate the sum by cases: >! 1, Il 1 and 1 _ I, and 1.1 > 1

and nEI, in each case writing the result in general terms for ease of collection.

U (-1) (,. .n l - P _n )-
-ln-}

l,..._l) * - _l A-> _ ,(A) + n Y !*(A.)
,jJ . .. nE1711~
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7(-1)I+1 ?p/ Ai h)

Ic{1.... R-1)

> I - V*~. -
(-z) l111 1+2 P n

I ICU ,... , _-1

.c{,..., -

.Bcl, II >i

Combining the three terms, we have,P,(L U ...,_., > P P_)!+. i  _)z+.L ,Q%

Tzl I I

+ _l P (

Ii-;
IC{l,. ., } I

=~ ~ ~~e A -)! iI_.

contradicting our assumption that there was an n for which (3')

was false.

17
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Theorem 3:

Let * be a frame of discernment, Bel a belief function, and _p the

corresponding set of Bayesian probability functions. Let B be evidence

assigned probability 1, or support 1, and suppose P(B) > 0 for every

PS. Then for every _e,

min P(API) < Bel(AlB) < P*(AIB) <max (AB)
_ 

--

where P*(ALB) - 1 - _el ) is Shafer's plausibility function.

Proof: (All maxima and minima are taken over Pfp.)

For Xc, Bel(X) - min P(X), and P*(X) - max P(X).

Bel(Awl)-Bel(B) min P(Aui)-min(B)
Bel(A I B) - - -

1-jtl(B) l-min(B)

mi IAI) mn (Ani) min(AuB)-P(B)

I-P(B) J

Let _qE/ be such that Q(AuB) - min P(AuB).

Then

_q q)-(B) _q(AUB)-fjinP (B)
sin i(AIB) - ) < - - - Bel(AIB)

-q) - 1-sin P(B)
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max P(A B) a " ". Let R S be such that R(AnB)

- max P(AnB). 
Then

R(AB) max P(AnB)
a P! ! (AIB) > > - = *(AB)R(B) -max P(B)

Lemma 1: Let e be a frame of discernment. Let our initial belief

function be Eel I. We obtain new evidence whose impact on the frame

of discernment 0 can be represented by a simple support function

(Shafer 1976, p. 7) _C whose single focus is C 26. B attributes

mass s to C and mass (1-s) to e.

Let the foci of Be l1 - the subsets A of e receiving mass ml(A)>O -.

be A1 , A2 ,..., A. We can construct a new frame of discernment 0' and

a new belief function Belj, such that

(a) For every 6ce, 5le(X) = Bel (X)

(b) For every xce, (Bl )(X) - B!j(xIE), where ele' , and

the evidence partially supporting . provides total support for

E. "9" represents the application of Dempster's rule of com-

bination to Bela and Belt; _el(XIE) represents Dempster's

rule of conditioning on E --the analog of Bayesian condition-

alization (Shafer 1976 p. 67).
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Proof: Let g be naw to e, and for every pcO 8emarate cw am °poealbi-

11ties" L and p. Let ' - (E': v c9(E.'-? v i-'P). Let z- (e: i nj ,-Wr)}.

Since the evidence that supports C Is to reader I certain, have £'ci

I. C., - ' 3EC(e"! -))-

Ve define gal ' on the basis of 9 as foll :

Bell' bas n foci of the forA eh ,ith mass (1-.41(ki) ,nre

is the mass function associated with hh•

For every .1 such that A nC' - 0, A Is to be a focus with mass

al A-, For convenience we take the f irst p. of the A, to be those for

which &nC' - . ote that P say be 0, but cannot be n, else h. 1 *

Bkel Qwould be undefined.

The remaing L give rise to the rmaining foci. These are of the

form (AirC')u(AjrnU, and receive the remaining mass. Since (jrne)u
)-(A rC) u (A.nt.) Is a possibility for 1,Sj, we write

- ..

{e: (A C')u(A.AtE) -s(Airs' )U (AD

Note that E.11,((A WM)unLV) wiAds since

these sets have positive mass only if An-0
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We first show that I 1 is a belief function. Obviously its aess

function a' is mo-neegative for every Ace', so we need only show that

I &'(&) - 1. Summing over the three kinds of foci, we have:
Ace.

2 - (l-)SI %A~) + +-1
Ac - - j-i-

We next show that le' is equivalent to Bel - I.e. that for any

xce, Bel I'(1) = B_..().

,,1(X. - -'A)- T-_'(A.) + .S'(Aj_,E)+ a_.'((n fl,,_ ,))
AcX Aicx -
-- - A.nEcX (Ainc) u(An E)c X

The first term yields L(l-sL31 (A )-(1-_q) (A

Since X - (InEMP(E), AnEc XnE if and Only if AX in view of the

fact that pe c kfnE if and only if yEA, and the same holds for X. Thus

the second term yields E s'-- (A i

All£ I

i~s p
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To evaluate the third term. we claim that (AflrS) c A if and only

if A.- If Ac. then A cit- c X and _An c X and so (A IX.

Suppose (. _ Cfa(A,) c X. Then A_ E cX, A f c E, and by the prece-

ding argument ._.. Thus the third term yields
Ad -

<_n

Putting the three parts together, ve have ht 1 '(&) -

We nov shoy that conditioning on E In the frame of discernment e'

is equivalent to combining uncertain evidence C vith Bel in the frame

of discernment 6 according to Deapster's rule of combination:

For every e, (f e!.C.:X_- Le%1'(XE)

~~,~c A -.

(The numerator comprises two sums, since k.lC has tvo foci: C ande

with masses s and (1-s) respectively.)

AcXuE AcEr
(2) (_ -

--
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&,L ' W'  "  r L )t since only the foci of the form A:,IrE-.

are included in E: A, (a 'LPu(Ar) Is not included in L and

since S't.L, (rC')u(Aj) Ls included In -I only if Anc-#, in

which case it has no mass.

Dence the denominators of (1) and (2) are the ase.

it remains to evaluate E &,'(A). Consider foci of the form

. A icl,uE if and only if A_.X, so these foci yield mass

-=i - LCX-

correspoadiug to the right hand term in the numerator of (1).

Consider foci of the form A nE. All of these are included in

Au!; they yield

~" ~imtju l (&) A F

to they drop out of the numerator of (2).
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Finally, consider foci of the form (AAV(AnD-) We first show

that (A nC')u(A n c ZE! if and only ifAn. Sups

(AnC')u(Auii) c LE'. Then A fl' C (AJI). but C*-E, soAR'

A iS'nE c IEJ only if A inC' c X. Suppose AnC' C x. Then since

E r- %E.(nC')u(Apf!) c IiJL

We compute the mass in the numerator of (2) due to foci of

this sort. They have mass only when V C#'O. And then they have

mass

Z~ -' (An

each A such that ArC' c X contributes s';(A) Their total ass

is therefore

corresponding to the first term of the numerator of (1).

We have therefore shovn that (WIOflI )(X)- , ell'(jlE).

C
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Lea 2

Suppose that !o is an assiguent of probabilities to the field

of propositions whose basis Is a, 12, 13*'.! a * Let ? be generated

by a shift in the probability assigned to A ; this shift is the

source of our new probability Pi" By Jeffrey's rule, for all X

._EQ) - o(xIA)-. 1(A) + Po(XA)'E_(A).

Then there exists a new field of propositions F', and a proposition

E, and a new probability function ? defined on P such that for every

proposition X in the old field F,

(a) U() - -o()

(b) fZ(11) - (X)

Proof:

Add a nev atomic proposition e to the basis of F to obtain

the field P, and represent it by K. We impose the constraint j CM')

P (A); K (9) say have any value that strikes our fancy.

We eitend so that for any &f 4( X -zo ); 1p is fully

equivalent to [ , so far as F is concerned, before we obtain informtion

about A. Specifically, set

'- %(& 1-Lo( 1-20(A)

For CL=', set

Z; LAV) ( k(LAA) + ILI %(LAA)I

X0 Q)Z I (LA
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Clearly, for &cL,

ve now show that for XEF, probabilities conditional on E are equal

to the probabilities given by Jeffrey's rule: ) Z (L).

For CLZ, I IX) -

P (E) • (!ko(XAA) + k' 4P,(A)]

IOWXA) Y!O(XPi)-

Z0(A) Z()+ 2() Z A 1(X

Theorem 4

Let a distribution of beliefs be given both by the function

Bell and by the prior set of probability distributions Sp. Suppose

new evidence is obtained whose impact is given by a simple support

function Bel, assigning positive mass to A and e, or, alternatively,

by a shift in the probability of A on each of the distributions

in ; let S be the result of propagating this shift by Jeffrey's

rule, and let IE12 be the result of applying Dempster's rule of combination.

Then

min P(x) < B1e,(X) < l-_ _L(r) < max P(x)

-2-2

for all subsets X of 9.

Proof:

Immediate from lemma 1, lemma 2, and Theorem 3.



Table I

Mass Lover Mteasure Upper Measure

AB X, 1J, '-2X-4X3-2-3,"

Ai X2 1 2 i 1 1-3 1X41 3 Kl 4 -X3 4  X13

£3 X3 X3 '-IY2X-l2X4X4L2

US X4 X4  '-11 X21312.il23f123

Q ) 12 X1+X2+X12 L-X3-X4-13

(D 1 13 -1+713+X13 I X2-Y14-*X24

@uQ UG'14 X1+XA+X14 X2""3

a oX24 X2+14+X24 "-X3-Xl-X13

G) U 0 34 x 3+X 4+X34  l-Xi12-Xu

(1 u uG 1123 X.1+X2+X3+ 12+X 3 +123+X12 3  11X4

SU 0U G x 124 1,+ +4+l.X4X2+lIX 3

U~ a) u ® 134 11+1 3 + 4 +X13+1-14+X34+1134 l-X 2

u a)u ® X234  2 +X 3+X 4+X 23+X24+X34+X234  1-11
e Xe 1 1

- 1-zti
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Table II

A: White 3: magnetic

Set mass Be , Frequncy

AB x 0.2 [0.2,0.4)

A1 0.2 [0.2,0.4'

Y-1.. 0.1 [0.1,0.11
x* 0.2 [0.2,0..3

X12 0.1 [O. 5,0.71

3 .0 10.3,0.5

-14 0.1 [0.5,0.7]
-23 0.0 [0.3,0.5]
Y2 0.1 [0.5,0.7]

-34 0.0 [0.3,0.5]

X123 0.0 [0.6,0.81
124 0.0 (0.9,0.9]

X1 34  0.0 [0.6,0.8]

"234 0.0 [0.6,0.81

e 0.0 [1.0,1.0]
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MOIMS

* Research f or this paper was supported in part by the U.S. Army

Signals Warfare Laboratory, and was stimulated in large part by

conversations with Jerry Feldman and Ron Loui of the Department

of Computer Science at the University of Rochester. Judea Pearl

carried out his duties as referee with exemplary efficiency and

offered much good advice. I hope I have succeeded in following

it. An anonymous referee pointed out an error in the original

proof of theorem 3, and provided a suggestion to correct it.

1. This approach is similar to that of Smith (1961). It is also

similar to the approach of Levi (1974, 1981), Good (1962), and

Kyburg (1974), but as Levi points out in (1981) there are

important differences. Levi represents a credal state by a set

of conditional probability functions, Q(x,y). For every z

consistent with background knowledge, the set of functions Q(x,y)

is convex. Since distinct convex sets of conditional probability

functions give rise to the same convex sets of absolute

probability functions, the two representations are not

equivalent. Smith and Kyburg represent a credal state by the

convex closure of all probabilities consistent with a set of

probability intervals. Shafer, as will be seen, implicitly

offers the same characterization. Dempster (1968) offers a more

restricted characterization: the convex set representing the

credal state is the largest that both satisfies the interval

constraints, and can be obtained from a space of "simple joint



propositions' in a certain way. Levi has shown (1981, pp. 338-

392) that these additional restrictions are incompatible with

certain natural forms of direct inference of probabilities from

known statistics.

2. In another place I sball argue that we can found all our

probabilities on direct or indirect statistical inference, or on

set-theoretical truths. No other source is needed.

3. This example was suggested in conversation by Teddy

Seideufeld.

4. This result was stated informally by Levi (1967), and is

reflected in Diaconis and Zabell, 1982, Theorem 2.1.

5. Dempster (1967, 1968) was well aware that his rule of

combination led to results stronger than those that would be

given by a mere generalization of orthodox Bayesian inference.

His reasons for preferring the rule at which he arrives are

essentially philosophical: in an orthodox Bayesian framework,

unless you restrict the family of priors, you don't get useful

results starting with zero information. But in expert systems,

we have no desire or need to start with zero information.

6. Quinlan's (1982) subtitle suggests the opposite: 'A cautious

approach to uncertain inference."

7. It is not clear that Shafer's belief functions were intended
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to be used in a decision-theoretic context. Even If they vere,

there would be serious difficulties standing in the way of such

employment. (See Levi (1978, 1980, 1983), and Seidenfeld

(1978)). For present purposes, these difficulties need not

concern us.

8. This corresponds to Levi's notion (1981) of E-admissibility.

9. This elegant and simple example was proposed by Jerry

Feldman.
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